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ABSTRACT

This paper describes NIX, a prototype operating system for future
manycore CPUs. NIX features a heterogeneous CPU model and a change
from the traditional Unix memory model of separate virtual address
spaces. NIX has been influenced by our work in High Performance com
puting, both on Blue Gene and more traditional clusters.

NIX partitions cores by function: Timesharing Cores, or TCs; Applica
tion Cores, or ACs; and Kernel Cores, or KCs. There is always at least one
TC, and it runs applications in the traditional model. KCs are optional
cores created to run kernel functions on demand. ACs are also optional,
and are entirely turned over to running an application, with no interrupts;
not even clock interrupts. Unlike traditional HPC Light Weight kernels,
functions are not static: the number of TCs, KCs, and ACs can change as
needs change. Unlike a traditional operating system, applications can
access services by sending a message to the TC kernel, rather than by a
system call trap.

Control of ACs is managed by means of active messages. NIX takes
advantage of the shared-memory nature of manycore CPUs, and passes
pointers to both data and code to coordinate among cores.

1. Introduction

In many cases, it has been argued that the operating system stands in the way of appli
cations and that they cannot increase their performance due to system activities and due
to its implementation. In particular, data base systems, fine-tuned servers, applications
built using the exokernel approach, with libOSes, all share this view.

However, in the era of multi-core and many-core machines, we believe that we
could get rid of the entire operating system kernel. We advocate for a null-kernel or
zero-kernel approach, where applications are assigned to cores with no OS interference;
that is, without an operating system kernel. Following this idea, we have built NIX.



NIX is a new operating system, evolving from a traditional operating system in a
way that preserves binary compatibility but also enables a sharp break with past prac
tice. NIX is strongly influenced by our experiences over the past five years with running
Plan 9 on some of the largest supercomputers in the world. It has been said that super
computing technology frequently tests out ideas that later appear in general purpose
computing, and certainly our experience is no exception.

NIX is designed for manycore processors. The manycore is probably obvious at
this point. The idea of hetereogeneity derives from discussions we have had with sev
eral vendors. First, the vendors would prefer that not all cores run an OS at all times.
Second, there is a very real possibility that on some future manycore systems, not all
cores will be able to support an OS. We have seen some flavor of this with the Cell
which, while a failed effort, does point toward a possible future direction.

NIX uses a messaging protocol between cores based on shared-memory active mes
sages. An active message sends not just references to data, but also to code. The proto
col uses a shared memory data structure, containing cache-aligned fields. In particular,
it contains arguments, a function pointer, to be run by the peer core, and an indication
for flushing TLB (when required).

2. The NIX approach: core roles

There are a few common attributes to todays manycore systems. The systems have a
non-uniform topology. Sockets contain CPUs, and CPUs contain cores. Each socket is
connected to a local memory, and can reach other memory only via other sockets, via
one or more hops; access to memory is hence non-uniform. Core-to-core and core-
to-memory communications time is non-uniform.

A very important aspect of these designs is that the varying aspects of the topology
affect performance, but not correctness. We preserve an old but very important princi
ple in successful computer projects, both hardware and software: things that worked
will still work. We are trying to avoid the high risk of failure that comes with clean sheet
designs. NIX thus begins life with a working kernel and full set of userland code.

The idea is to keep a standard time-sharing kernel as it is now, but to be able to
exploit other cores for either user or kernel intensive processes. In the worst case, the
time-sharing kernel will be able to work as it does now. In the best case, applications
will be able to run as fast as permitted by the raw hardware.

NIX derives from Plan 9 from Bell Labs. Source code, compiled for Plan 9, also
works on NIX. We make an even stronger guarantee: if a binary worked on Plan 9, it will
work on NIX.

NIX partitions cores by function, hence implementing a type of heteregeneity. The
basic x86 architecture has, since the advent of SMP, divided CPUs into two basic types:
BSP, or Boot Strap Processor; and AP, or Application Processor¹. In a sense, x86 systems
have had heterogeneity from the start, although in keeping with the "things still work"
principle, it was not visible for the most part at user level. NIX preserves this distinc
tion, with a twist: we create three new classes of cores:

1 The first, TC, is a time sharing core. The BSP is always a TC. There can be more
than one TC, and in fact a system can consist of nothing but TCs, as determined by

________________
¹ It is actually a bit more complex than that, due to the advent of multicore. On a multi
core socket, only one core is the "BSP"; it is really a Boot Strap Core, but the vendors have
chosen to maintain the older name.



the needs of the user. When all the cores are TC cores, behaviour is not different
from a SMP system.

2 The second, AC, is an application core: only APs can be Application Cores. Applica
tion cores run applications, in a non-preemptive mode, and never field interrupts.
In this case, applications run as if they had no operating system, but they can still
make system calls and rely on OS services as provided by other cores. But for per
formance, running on ACs is transparent to applications, unless they want to take
control of this feature.

3 The third, KC, is a kernel core. Kernel cores can be created under control of the TC.
KCs do nothing but run OS tasks for the TC. A KC might, for example, run a file sys
tem call. KCs never run user mode code. Typical usages for KCs are to service
interrupts from device drivers and to perform system calls requested to, otherwise
overloaded, TCs.

Cores hence have roles. Part of the motivation for the creation of these roles comes
from discussions with vendors. While cores on current systems are all the same with a
few exceptions, such as Cell there is no guarantee of such homogeneity in future sys
tems. In fact, heterogeneity is almost guaranteed by a simple fact: systems with 1024
cores will not need to have all 1024 cores running the kernel. Designers see potential
for die space and power savings if, say, a system with N cores has only sqrt(N) cores
complex enough to run an operating system and manage interrupts and I/O. At least
one vendor we have spoken with evinced great dismay at the idea of taking a manycore
system and treating it as a traditional SMP system².

The BSP behaves as a TC and coordinates the activity of other cores in the system.
After start-up, ACs sit in a simple command loop, acsched, waiting for commands, and
executing them as instructed. KCs do the same, but they are never requested to exe
cute user code. TCs execute standard time-sharing kernels, similar to a conventional
SMP system.

TC

KC

AC

Figure 1 Different cores have different roles. TCs are Time-Sharing
cores; KCs are Kernel cores; ACs are Application cores. The BSP (a TC)
coordinates the roles for other cores, which may change during time.

Therefore, there are two different types of kernel in the system: TCs and KCs execute
the standard time-sharing kernel. ACs execute almost without a kernel, but for a few
exception handlers and their main scheduling loop, acsched. This has a significant
impact on the interference caused by the system to application code, which is
________________
² Direct quote: ��It would be a terrible waste to run Linux on every core of this processor,
but that�s all most people are thinking of��.



neggligible on ACs. Nevertheless, ACs may execute arbitrary kernel code as found in the
TC, because of the shared memory assumption, if the architecture is compatible.

Cores can change roles, again under the control of the TC. A core might be needed
for applications, in which case NIX can direct the core to enter the AC command loop.
Later, the TC might instruct the core to exit the AC loop and re-enter the group of TCs.
At present, only one core the BSP boots to become a TC; all other cores boot and enter
the AC command loop. This will be fixed soon.

3. Inter−Core Communication

In other systems addressing heterogeneous many-core architectures, message passing
is the basis for coordination. Some of them handle the different cores as a distributed
system.

While future manycore systems may have heterogeneous CPUs, one aspect of them
it appears will not change: there will still be shared memory addressable from all cores.
NIX takes advantage of this property in the current design. NIX-specific communica
tions for management are performed via active messages, called ��inter-core-calls��, or
ICCs.

An ICC consists of a structure containing a pointer to a function, an indication to
flush the TLB, and a set of arguments. Each core has a unique ICC structure associated
to it, and polls for a new message while idle. The core, upon receiving the message,
calls the supplied function with the arguments given. Note that the arguments, and not
just the function, can be pointers, because we are sharing memory.

The BSP reaches other cores mostly by means of ICCs. Inter-Processor Interrupts
(IPIs) are seldom used. They are relegated for those cases when asynchronous comunica
tion cannot be avoided; for example, when a user wants to interrupt a program running
in its AC.

4. User interface

In many cases, user programs may forget about NIX and behave as they would in a stan
dard Plan 9 system. The kernel may assign an AC to a process, for example, because it
is consuming full quanta and is considered as CPU bound. In the same way, an AC pro
cess that issues frequent system calls might be transparently moved to a TC, or a KC
might be assigned to execute its system calls. In all cases, this happens transparently to
the process.

For those who care, manual control is also possible. There are two primary inter
faces to the new activeity:

� A new system call:

execac(int core, char *path, char *args[]);

� Two new flags for the rfork system call:

rfork(RFCORE); rfork(RFCCORE);

Execac is similar to exec, but includes a core number as its first argument. If this num
ber is 0, the standard exec system call is performed, except that all pages are faulted in
before the process starts. If this number is negative, the process is moved to an AC,
chosen by the kernel. If this number is positive, the process moves to the AC with that
core number; if available, otherwise the system call fails.



RFCORE is a new flag for the standard Plan 9 rfork system call, which controls
resources for the process. This flag asks the kernel to move the process to an AC, cho
sen by the kernel. A counterpart, RFCCORE, may be used to ask the kernel to move the
process back to a TC.

Thus, processes can also change their mode. Most processes are started on the TC
and, depending on the type of rfork or exec being performed, can optionally transition
to an AC. If the process takes a fault, makes a system call, or has some other problem, it
will transition back to the TC for service. Once serviced, the process may resume execu
tion in the AC. Note that this is a description of behavior, and not of the implementa
tion. In the implementation, there is no process migration.

user

kernel (TC)

move to AC

user

kernel (TC) AC

Figure 2 A traditional Plan 9 process has its user space in the same con
text used for its kernel space. After moving to an AC, the user context is
found on a different core, but the kernel part remains in the TC as a han
dler for system calls and traps.

Binary compatibility for processes is hence rather easy: old processes only run on a TC,
unless the kernel decides otherwise. If a user makes a mistake and starts an old binary
on an AC, it will simply move back to a TC at the first system call and stay there until
directed to move. If the binary is mostly spending its time on computation, it can still
move back out to an AC for the duration of the time spent in a computational kernel.
No checkpointing is needed: this movement works because the cores share memory.

5. Semaphores and tubes

Because in NIX applications may run in ACs undisturbed by other kernel activities, it is
important to be able to perform inter process communication wihout the help of the ker
nel if feasible. Besides the standard toolkit of IPC mechanisms in Plan 9, NIX includes
two mechanisms for this purpose:

� Optimistic user-level semaphores, and

� Tubes.

NIX semaphores use atomic increment and decrement operations, as found on AMD64
and other architectures, to update a semaphore value in order to synchronize. If the
operation performed in the semaphore may proceed without blocking (and without
requiring to awake a peer process), it is performed by the user library without entering
the kernel. Otherwise, the kernel is called to either block or awake another process.

The interface provided for semaphores contains the two standard operations and
another one, altsems, which is not usual.



void upsem(int *sem);
void downsem(int *sem);
int altsems(int *sems[], int nsems);

Upsem and downsem do not deserve any comment, other than their optimism and their
ability to run at user-level when feasible. In the worst case, they call two new system
calls (semsleep, and semwakeup) to block or wake up another process, if required.
Optionally, before blocking, downsem may spin, busy waiting for a chance to perform a
down on the semaphore without blocking.

Altsems is a novel operation, which tries to perform a downsem in one of the given
semaphores. It is not known in advance in which semaphore will be the down operation
performed. If several semaphores are ready for a down without blocking, one of them is
selected and the down is performed; the function returns an index value indicating
which one. If none of the downs may proceed, the operation calls the kernel and blocks.

Therefore, in the best case, altsems performs a down in user space, without enter
ing the kernel, in a non-determinist way. In the worst case, the kernel is used to await
for a chance to down one of the semaphores. Before doing so, the operation may be
configured to spin and busy wait for a while.

Optimistic semaphores, as described, are used in NIX to implement shared memory
communication channels called tubes. A tube is a buffered unidirectional channel.
Fixed-size messages can be sent and received from it (but different tubes may have dif
ferent message sizes). The interface is similar to that for Channels in the Plan 9 thread
library:

Tube* newtube(ulong msz, ulong n);
void freetube(Tube *t);
int nbtrecv(Tube *t, void *p);
int nbtsend(Tube *t, void *p);
void trecv(Tube *t, void *p);
void tsend(Tube *t, void *p);
int talt(Talt a[], int na);

Newtube creates a tube for the given message size and number of messages in the tube
buffer. Tsend and trecv can be used to send and receive. There are non-blocking vari
ants, which fail instead of blocking if the operation cannot proceed. And there is a talt
request to perform alternative sends and/or receives on multiple tubes.

The implementation is a simple producer-consumer, but, because of the sema
phores used, it is able to run at user space without entering the kernel when sends and
receives may proceed:

struct Tube
{

int msz; /* message size */
int tsz; /* tube size (# of messages) */
int nmsg; /* semaphore: # of messages in tube */
int nhole; /* semaphore: # of free slots in tube */
int hd;
int tl;

};

It is feasible to try to perform multiple sends and receives at the same time, waiting
for the chance to execute one of them. This operation exploits altsems to operate at
user-level if possible, calling the kernel otherwise. It suffices to fill an array of sema
phores with either the ones representing messages in a tube, or the ones representing



empty slots in a tube, depending on whether a receive or a send operation is selected.
Then, calling altsems guarantees that, upon return, the operation may proceed.

6. Implementation

As of today, the kernel is operational, although not in production. More work is needed
in system interfaces, role changing, and memory management; but the kernel is active
enough to be used, at least for testing.

We have changed a surprisingly small amount of code at this point. There are about
400 lines of new assembler source, about 80 lines of platform independent C source,
and about 350 lines of AMD64 C source code. To this, we have to add a few extra
source lines in the start-up code, system call, and trap handlers. This implementation is
being both developed and tested only in the AMD64 architecture.

We found that there seems to be no performance penalty for pre-paging, which is
interesting on its own.

To dispatch a process for execution at one AC we use the inter-core-call, active
message, mechanism. Figure 3 explains how it works:

runac . . . . . . . . . . . acsched

TC AC

Figure 3 Inter-core calls. The scheduller in the AC is waiting for point
ers to functions to be called in the AC context.

The function acsched runs on ACs, as part of its start-up sequence. It sits in a tight loop
spinning on an active message function pointer. To ask the AC to execute a function,
the TC sets in the ICC structure for the AC the arguments, indication to flush the TLB or
not, and the function pointer and then changes the process state to Exotic, which would
block the process for the moment. When the pointer becomes non-nil, the AC calls the
function. The function pointer uses a cache line and all other arguments use a different
cache line, so that polling can be efficient regarding bus transactions. Once the func
tion is done, the AC sets the function pointer to nil and calls ready on the process that
scheduled the function for execution. You think of this as a soft IPI.

While an AC is performing an action dictated by a process in the TC, its Mach struc
ture points to the process so that up in the AC refers to the process. The process refers
to the AC via a new field Mach.ac. Should the AC become idle, its Mach.proc field is set
to nil.

This mechanism is kind of like a vm_exit(). While we could think about implement
ing this with vm_enter(), it�s not quite clear we should take that step. VMs have over
head, at least when compared to the mechanism we use. This mechanism is used by
NIX to dispatch processes to ACs, as shown in figure 4:

A process that calls the new system call, execac (or uses the RFCORE flag in rfork)
makes the kernel call runacore in the context of the process. This function makes the
process become a handler for the actual process, which would be running from now on
on the AC. To do so, runacore calls runac to execute actouser on the AP selected. This
transfers control to user-mode, restoring the state as saved in the Ureg kept by the



user code

execac runacore . . . . . . . . . . . actouser

user code

Figure 4 Migration of a user process to an AC using execac.

process in its kernel stack. Both actouser and any kernel handler executing in the AC
runs using the Mach stack.

The user code runs undisturbed in the AC while the (handler) process is blocked,
waiting for the ICC to complete. That happens as soon as there is a fault or a system call
in the AC.

When an AP takes a fault, the AP transfers control of the process back to the TC, by
finishing the ICC, and then waits for directions. That is, the AP spins on the ICC struc
ture waiting for a new call.

user code

trap

actrap...........runacore

Figure 5 Call path for trap handling in AC context

The handling process, running runacore, handles the fault and issues a new ICC to
make the AP return from the trap, so that the process continues execution in its core.
The trap might kill the process, in which case the AC is released and becomes idle.

Handling page faults requires the handling process to get access to the faulting
address, cr2 register as found in the AC. We have virtualized the register. The TC saves
the hardware register into a software copy, kept in the Mach structure. The AC does the
same. The function runacore updates the TC software cr2 with the one found in the AC
before calling trap, so that trap handling code does not need to know which core caused
the fault.

Floating point traps are handled directly in the AC, instead of dispatching the pro
cess to the TC; for efficiency. Only when they cause an event or note to be posted to the
process, is the process transferred to the TC (usually to be killed).

When an AP makes a system call, the kernel handler in the AP returns control back
to the TC in the same way it is done for faults, by completing the ICC. The handler pro
cess in the TC serves the system call and then transfers control back to the AC, by issu
ing a new ICC to let the process continue its execution after returning to user mode.



runacore . . . . . . . . . . . actrapret

user code

trap()

Figure 6 Return path for trap handling in AC context

Like in traps, the user context is kept in the the handler process kernel stack, as it is
done for all other processes. In particular, it is kept within the Ureg data structure as
found in that stack.

The handler process, that is, the original time-sharing process when executing
runacore, behaves like the red line separating the user code (now in the AC) and the
kernel code (run in the TC). It is feasible to bring the process back to the TC, as it was
before calling execac. To do so, runacore returns and, only this case, both execac and
syscall are careful not do anything but returning to the caller. The reason is that calling
runacore was like returning from exec or rfork to user code (only that in a different
core). All book-keeping to be done while returning, was already done by runacore.
Also, because the Ureg in the bottom of the kernel stack for the process has been used
as the place to keep the user context, the code executed after returning from syscall
would restore the user context as it was when the process left the AC to go back to the
TC.

Hardware interrupts are all routed to BSP. ACs should not take any interrupts, as
they cause jitter. We changed the round-robin allocation code to find the first core able
to take interrupts and route all to that. We assume that first core is the BSP. (Note that
is still feasible to route interrupts to other TCs or KCs, and we might do so in the
future). Also, no APIC timer interrupts are enabled on ACs. User code in ACs runs
undisturbed, until it faults or makes a system call.

The AC requires a few new assembler routines to transfer control to/from user
space, while using the standard Ureg space in the bottom of the process kernel stack for
saving and restoring process context. The process kernel stack is not used (but for
keeping the Ureg) while in the ACs; instead, the per-core stack, known as the Mach
stack, is used for the few kernel routines executed in the AC.

Because the instructions used to enter the kernel, and the sequence, is exactly the
same in both the TC and the AC, no change is needed in the C library (other than a new
system for using the new service). All system calls may proceed, transparently for the
user, in both kinds of cores.



7. Queue based system calls?

As an experiment, we implemented a small thread library supporting queue-based sys
tem calls similar to those in [5]. Threads are cooperatively scheduled within the process
and not known to the kernel.

Each process has been provided with two queues: one to record system call
requests, and another to record system call replies. When a thread issues a system call,
it fills up an slot in the system call queue, instead of making an actual system call. At
that point, the thread library marks the thread as blocked and proceeds to execute other
threads. When all the threads are blocked, the process waits for replies in the reply
queue.

Before using the queue mechanism, the process issues a real system call to let the
kernel know. In response to this call, the kernel creates a (kernel) process sharing all
segments with the caller. This process is responsible for executing the queued system
calls and placing replies for them in the reply queue.

With this implementation, we made several performance measurements before pro
ceeding further. In particular, we measured how long it takes for a program with 50
threads to execute 500 system calls in each thread. For the experiment, the system call
used does not block and does nothing. Table 1 shows the result.

____________________________________
Core System Call Queue Call____________________________________
TC 0.02s 0.06s____________________________________
AC 0.20s 0.04s____________________________________




















Table 1 Times in seconds, of elapsed real time, for a series of syscall
calls and queue-based system calls from the TC and the AC.

It takes this program 0.06 seconds (of elapsed, real time) to complete when run on the
TC using the queue based mechanism. However, it takes only 0.02 seconds to complete
when using the standard system call mechanism. Therefore, at least for this program,
the mechanism is more an overhead than a benefit in the TC. It is likely that the total
number of system calls per second that could be performed in the machine might
increase due to the smaller number of domain crossings. However, for a single program,
that does not seem to be the case.

As another experiment, running the same program on the AC takes 0.20 seconds
when using the standard system call mechanism, and 0.04 seconds when using queue-
based system calls. The AC is not meant to perform system calls. A system call made
while running on it implies a trip to the TC and another trip back to the AC. As a result,
issuing system calls from the AC is expensive. Looking at the time when using queue-
based calls, it is similar to one for running in the TC (but more expensive). Therefore,
we may conclude that queue based system calls may make system calls affordable even
for ACs.

However, a more simple mechanism is to keep in the TC those processes that did
not consume all its quantum at user level, and move to ACs only those processes that
do so. As a result, we have decided not to include queue based system calls (although
tubes can still be used for IPC).

During the experiment, we found an interesting bug in the implementation of NIX.
Usually, when a processor has no ready process, the scheduler calls idlehands to halt
the processor. It will wake up on the next interrupt. However, it can now be the case



than an AC replies to a previous request made by the TC (e.g., to run a user program).
By that time, the TC might be idle and it would miss the reply until the next external
interrupt. The temporary fix was not to call idlehands on the coordinating TC (the BSP).

8. Things not done yet

There are a few other things that have to be done. To name a few: Including more statis
tics in the /proc interface to reflect the state of the system, considering the different
kind of cores in it; deciding if the current interface for the new service is the right one,
and to what extent the mechanism has to be its own policy; implementing KCs (which
should not require any code, because they must execute the standard kernel); testing
and debugging note handling for AC processes; more testing and fine tuning.

9. Evaluation

9.1. strid3

Strid3 is part of the "tasty loops" set of benchmarks, and is widely used in HPC eval
uation of architectures. In addition to performance measurement it has been used to
find bugs in implementations, such as the Barcelona L3 bug.

Strid3 models S = AX + Y, or SAXPY, i.e. this loop

void saxpy(float* x, float* y, int n, float a) {
int i;
for (i = 0; i < n; i++) {
y[i] = a * x[i] + y[i];

}
}

with a crucial difference: the stride 1 of the above loop is made stride n, where n is in
the range of 1 to 1024 and is incremented each time through the loop. The loop is also
run many times to make sure the computation is long enough to hide startup overheads.
The code thus looks like:

for( j=0; j<irep; j++ ) {
t = 1.0/(double)(j+1);
for( i=0; i<n*incx; i+=incx ) {

yy[i] += t*xx[i];
}

}

The changing value of t, the coeffecient, is done in part to make sure the compiler opti
mizes nothing away.

In strid3, the innermost loops are shown above. The outer loop is the repeated call
to these loops, increasing the stride each time. Each iteration of the outer loop results in
a print to stdout.

Strid3 is designed to stress every part of the memory system. For small strides
greater than one, one can see impacts as cache lines are used less efficiently. As the
stride grows to 256, 512, and beyond, the effect of TLB reloads becomes very visible.

We ran strid3 on the TC and the AC. We had to modfy strid3 in a few simple ways to
avoid unnecessary AC to TC transitions that impact performance. The most important
change was to avoid the prints in each iteration of the outer loop. The transtion to the
TC from the AC was having a small but measurable impact due to the need to take a
trap to restart the floating point unit each time the process resumes on the AC.



The modified code saves the results in an array and prints them at the end. We
show the graph of the results below.
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9.2. Two megabyte pages

We tested strid3 on a kernel built to support two Mbyte pages. We show the results on
tc and ac below.
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9.2.1. The importance of pre−faulting

As the results show,the time sharing core wins in this case. It turned out there was a
bug in the prepaging code. Once the bug was fixed, performance improved as shown
below.
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9.3. ftq

FTQ, or Fixed Time Quantum, is a test designed to provide quantitative characterization
of OS noise[4]. FTQ performs work for a fixed amount of time and then measures how
much work was done. Variance in the amount of work done is a result of OS noise,
among other things. Because FTQ measures work per unit of time, and care is taken to
make the time measurement stationary, the full set of signal processing tools can be
applied to FTQ output data.

It is possible to eyeball the raw data from FTQ. It is dangerous, as pointed out in
the paper, but for simpler examinations it is very useful. A common technique is to plot
work performed over time. In an ideal world, the amount of work per time unit is con
stant. In the real world, it never is. Even on the Blue Gene systems, which are very good,
there is always a fair amount of noise due to clock and IO interrupts. We show an FTQ



run on the TC below.
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Next we show the AC run. It is, apparently, much worse:
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Here we see the danger of eyeballs: the TC looks better, but in fact is not: the noise
is highly aperiodic, which can be seen if we zoom in:
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Hence, the magnitude of the noise on the AC is much higher, but the noise on the TC
has many components. While we might use an FFT or other tools to find the frequency
components of the noise, there is a simpler way to quickly diagnose the problem on the
AC. Again, observe that the behavior seems strongly periodic. A simple test is to low-
pass-filter the data, and then run it through uniq without sorting it. If there is strongly
periodic behavior, it will be imediately apparent. The raw data looks like this, showing
time absolute stamp (cycle) counter value and work performed:

11015693533663 2003
11015694581996 2004
11015695630823 2003
11015696679118 2004
11015715274047 534
11015715553592 2004
11015716602413 2003
11015717650708 2004
11015718699559 2003
11015719747903 2004

The low pass filter is trivial: delete the last character of each work performed num
ber, and get rid of the cycle times. The output looks like this:

200
200
200
200
200
53
200
200
200
200
200

When piped through uniq -c, the output looks like this:



255 200
1 54

255 200
1 66

255 200
1 48

255 200
1 39

255 200
1 28

Clearly, something is happening every 256 cycles to slow things down. As it hap
pens, the code uses an array of structs to record the data. Each struct element is 16
bytes. Every 256 elements, the code is moving to a new page. The interference is from
page faulting: when we fault, we move back to the TC. In this case, the fault is on an
unitialized, allocated array: the fault is to /dev/zero. It is fast but still detectable as
interference.

We changed the code to memset the array to zero before moving to the AC. A gen
eral rule for using NIX is that programs should mallocz all new data, to make sure pages
are in memory, so as to avoid page faults. The result is shown below:

9.425e+12 9.43e+12 9.435e+12 9.44e+12

0

500

1000

1500

2000

FTQ on an AC
Work vs. Cycles

Smoother is better

This result is not only very good, it is close to the theoretical ideal. In fact the vari
ance is almost entirely confined to the low-order bit, within the measurement error of
the counter.

10. Conclusions

NIX presents a new model for operating systems on manycores. It follows a heteroge
neous multicore model, which is the anticipated model for future systems. It uses active
messages for inter-core control. It also preserves backwards compatibility. Programs
will always work.
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